## Spool valves and solenoid valves

Series 2100-2400-2600

## Series 2100-2400-2600

## General

The 2000 series solenoid valves have been developed to meet requirements for electronically controlled pneumatic systems and / or serial control systems already used in all manufacturing sectors.
They have been designed to be easily assembled into groups or manifolds and include integral electrical connection (2100 and 2400 ), to facilitate simple and speedy integration into a control system.
The series comprises a range of products classified according to type, size and performance.
There are tree main sizes, 10 mm ., 18 mm . and 26 mm .,
with each size further divided into 3 types " LINE ", " FLAT " and " VDMA " or "BASE".
The 10 mm . and 18 mm .24 VDC range of valves includes a range of accessories for the production of manifolded valve assemblies with integral electrical connections.
Modules are available in two or four station variants for flexibility and are supplied to IP40 or alternatively IP65 environmental protection.


## Use and maintenance

The average life of the valve exceeds 50.000 .000 cycles when used under optimum conditions.
Adequate lubrication reduces seals wear, just as proper filtering of supply air prevents the build-up of dirt that can cause malfunction. Ensure the valve is used within our recommended criteria for pressure and temperature.
In dirty or dusty environments, the exhaust ports should be protected.
A seal kit including the spool is available for overhauling the valve. This operation does not require a skilled worker, although a particular care should be taken when reassembling the valve.

## Series 2100

## General

This solenoid valves series has been developed to meet requirements for electronically controlled pneumatic systems and / or serial control systems already used in all manufacturing sectors.
They have been designed to be easily assembled into groups or manifolds and include integral electrical connection to facilitate simple and speedy integration into a control system.
The 2100 series comprises a range of products classified according to the body size of 10 mm divided into 3 types "LINE", "FLAT" and "BASE".
The 10 mm . and 18 mm .24 VDC range of valves includes a range of accessories for the production of manifolded valve assemblies with integral electrical connections.
Modules are available in two or four station variants for flexibility and are supplied to IP40 or alternatively IP65 environmental protection.

## Construction characteristics

Central body
Extruded aluminium bar with chemical nickel treatment and PTFE (polytetrafleurethylene)

| Connection plates | (polytetrafleurethylene) |
| :---: | :---: |
| Operators | Technopolymer |
| Spool seals | Oil resistant nitrile rubber - HNBR |
| Spools | Aluminium 2011 |
| Springs | AISI 302 stainless steel |
| Pistons | Aluminium 2011 |
| Piston seals | Oil resistant nitrile rubber - NBR |

## Ordering codes for minature solenoid valves

The 10 mm . miniature solenoid valve with $0,7 \mathrm{~mm}$. orifice has been selected for piloting this series of valves (see Series 300).
This results in low response times and reduced power consumption.
The valve can be supplied with the coil upward or downward depending on the application.
Codes are as follows:

## Coil upward code

01 = miniature sol. 12 VDC $90^{\circ}$ conn. with led
$21=$ miniature sol. 12 VDC line conn. with led
$02=$ miniature sol. $24 \mathrm{VDC} 90^{\circ} \mathrm{Conn}$. with led
$22=$ miniature sol. 24 VDC line conn. with led

## Coil downward code

$11=$ miniature sol. $12 \mathrm{VDC} 90^{\circ}$ conn. with led
$31=$ miniature sol. 12 VDC line conn. with led
$12=$ miniature sol. $24 \mathrm{VDC} 90^{\circ} \mathrm{conn}$. with led
$32=$ miniature sol. 24 VDC line conn. with led
$91=$ miniature sol. 12 VDC for integral electrical connections
$92=$ miniature sol. 24 VDC for integral electrical connections
Miniature solenoid ${ }_{c} \mathbf{N}_{\mathrm{us}}$ homologated are available (see Series 300).

## Use and maintenance

The average life of the solenoid valve exceeds 50.000 .000 cycles when used under optimum conditions.
Adequate lubrication reduces seals wear, just as proper filtering of supply air prevents the build-up of dirt that can cause malfunction.
Ensure the valve is used within our recommended criteria for pressure and temperature.
In dirty or dusty environments, the exhaust ports should be protected.
A seal kit including the spool is available for overhauling the valve. This operation does not require a skilled worker, although a particular care should be taken when reassembling the valve.

## Pneumatic-Spring

| Operational characteristics |  |
| :---: | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure (bar) | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1$ ( $\mathrm{N} / \mathrm{min}$ ) | 150 |
| Orifice size (mm) | 2.5 |
| Working ports size | M5 |



Pneumatic - Differential

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Maxworking pressure (bar) | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
| Flow rate at 6 barwith $\Delta \mathrm{p}=1(\mathrm{~N} / / \mathrm{min})$ | 150 |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M 5 |



Weight 28 g
Minimum piloting pressure 2 bar

${ }^{14}-\square=1$

Pneumatic - Pneumatic
Coding: 2115.52.00.18

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure (bar) | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{~N} / / \mathrm{min})$ | 150 |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M |



Weight 30 g
Minimum piloting pressure 2 bar

(14- $\left.\left.\Delta\right|_{513} ^{4}\right|_{1} ^{2} \checkmark-12$

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure $(\mathrm{bar})$ | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{~N} / \mathrm{min})$ | 150 |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M 5 |



Weight 42 g
Minimum piloting pressure 2 bar

Solenoid - Differential

| Fluid |
| :--- | :--- |
| Max working pressure (bar) |
| Temperature ${ }^{\circ} \mathrm{C}$ |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Ni} / \mathrm{min})$ |
| Orifice size $(\mathrm{mm})$ |
| Working ports size |

Weight 42 g
Minimum piloting pressure 2 bar



${ }^{14}$ 品

| Operational characteristics |  |
| :--- | :---: |
| Filtered air. No lub |  |

Filtered air. No lubrication needed, if applied it shall be continuous
7
$-5 \div+50$
$-5 \div+$
$\left[\begin{array}{l}1 \\ 2\end{array}\right.$
$\div+50$
150
2.5
M5

M5

$01=12 \mathrm{VDC} 90^{\circ}$ conn. with led $21=12$ VDC line conn. with led $02=24 \mathrm{VDC} 90^{\circ}$ conn. with led $22=24 \mathrm{VDC}$ line conn. withled $11=12 \mathrm{VDC} 90^{\circ}$ conn. with led
(1) downward
$31=12$ VDC line conn. with led downward
$12=24 \mathrm{VDC} 90^{\circ}$ conn. with led downward
$32=24 \mathrm{VDC}$ line conn. with led
downward


| (1) | VOLTAGE |
| :---: | :---: |
|  | $01=12 \mathrm{VDC} 90^{\circ}$ conn. with led |
|  | $21=12 \mathrm{VDC}$ line conn. with led |
|  | $02=24 \mathrm{VDC} 90^{\circ}$ conn. with led |
|  | $22=24 \mathrm{VDC}$ line conn. withled |
|  | $11=12 \mathrm{VDC} 90^{\circ}$ conn. with led downward |
|  | $31=12 \mathrm{VDC}$ line conn. with led downward |
|  | $12=24 \mathrm{VDC} 90^{\circ}$ conn. with led downward |
|  | $32=24 \mathrm{VDC}$ line conn. with led downward |

$$
\left.\left.\stackrel{14}{\square} \Rightarrow\right|_{5,3} ^{4,2}\right|_{12} ^{2}
$$

Solenoid - Solenoid

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure $(\mathrm{bar})$ | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$ | 150 |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M 5 |

Coding: 2115.52.00.35.(T)

| (1) | VOLTAGE |
| :---: | :---: |
|  | $01=12 \mathrm{VDC} 90^{\circ}$ conn. with led |
|  | $21=12 \mathrm{VDC}$ line conn. with led |
|  | $02=24 \mathrm{VDC} 90^{\circ}$ conn. with led |
|  | $22=24 \mathrm{VDC}$ line conn. withled |
|  | $11=12 \mathrm{VDC} 90^{\circ}$ conn. with led downward |
|  | $31=12 \mathrm{VDC}$ line conn. with led downward |
|  | $12=24 \mathrm{VDC} 90^{\circ}$ conn. with led downward |
|  | $32=24 \mathrm{VDC}$ line conn. with led downward |



Weight 52 g
Minimum piloting pressure 2 bar


$\stackrel{14}{\vec{\nabla}\rangle}$

Pneumatic - Pneumatic

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure (bar) | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
|  | 180 (Pressured centres) |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$ | 130 (Closed centres) |
|  | 140 (Open centres) |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M 5 |

Coding: 2115.53.E. 18

## FUNCTION

E 31 = Closed centres
$32=$ Open centres
$33=$ Pressured centres


Weight 32 g
Minimum piloting pressure 2,5 bar



M

Solenoid - Solenoid

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure (bar) | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
|  | 180 (Pressured centres) |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{NI} / \mathrm{min})$ | 130 (Closed centres) |
|  | 140 (Open centres) |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M 5 |

Coding: 2115.53.©.35.(T)

| (F) | FUNCTION |
| :---: | :---: |
|  | 31 = Closed centres |
|  | $32=$ Open centres |
|  | 33 = Pressured centres |
| (1) | VOLTAGE |
|  | $01=12 \mathrm{VDC} 90^{\circ}$ conn. with led |
|  | $21=12 \mathrm{VDC}$ line conn. with led |
|  | $02=24 \mathrm{VDC} 90^{\circ}$ conn. with led |
|  | $22=24 \mathrm{VDC}$ line conn. with led |
|  | $11=12 \mathrm{VDC} 90^{\circ}$ conn. with led downward |
|  | $31=12 \mathrm{VDC}$ line conn. with led downward |
|  | $12=24 \mathrm{VDC} 90^{\circ}$ conn. with led downward |
|  | $32=24 \mathrm{VDC}$ line conn. with led downward | downward



Weight 54 g
Minimum piloting pressure 2,5 bar


## 

แutine
แ

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure (bar) |  |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
| Flow rate 6 bar ith $\Delta \mathrm{p}=1(\mathrm{~N} / / \mathrm{min})$ |  |
| Orifice size $(\mathrm{mm})$ | 150 |
| Working ports size | 2.5 |



Weight 32 g
Minimum piloting pressure 2 bar



Pneumatic - Differential
Coding: 2135.52.00.16

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure (bar) | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$ | 150 |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M 5 |



Weight 30 g
Minimum piloting pressure 2 bar


$$
14-\left.\square\right|_{513} ^{4}=\left.\right|_{12} ^{2}
$$

Pneumatic - Pneumatic
Operational characteristics

| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |  |
| :--- | :---: | :---: |
| Max working pressure (bar) | 7 |  |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |  |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{~N} / \mathrm{min})$ | 150 |  |
| Orifice size $(\mathrm{mm})$ | 2.5 |  |
| Working ports size | M |  |



Weight 32 g
Minimum piloting pressure 2 bar

(14-


Pneumatic - Pneumatic

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure (bar) | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
|  |  |
| Flow rate at 6 bar with $\Delta p=1(\mathrm{~N} / \mathrm{min})$ | 180 (Pressured centres) |
|  | 130 (Closed centres) |
|  | 140 (Open centres) |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M5 |

Coding: 2135.53.巴.18
FUNCTION
E 31 = Closed centres
32 = Open centres
33 = Pressured centres


Weight 28 g
Minimum piloting pressure 2 bar



M 4

Solenoid - Solenoid

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure (bar) | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
|  | 180 (Pressured centres) |
| Flow rate at 6 bar with $\Delta p=1(\mathrm{Nl} / \mathrm{min})$ | 130 (Closed centres) |
|  | 140 (Open centres) |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M 5 |



Weight 52 g
Minimum piloting pressure 2,5 bar


Coding: 2135.53.©.35.T
FUNCTION
$\Theta$ 32 = Open 33 = Pressured centres VOLTAGE
$01=12 \mathrm{VDC} 90^{\circ}$ conn. with led $21=12 \mathrm{VDC}$ line conn. with led $02=24 \mathrm{VDC} 90^{\circ}$ conn. with led $22=24 \mathrm{VDC}$ line conn. with led
$11=12 \mathrm{VDC} 90^{\circ}$ conn. withled downward
$31=12$ VDC line conn. with led
(T) downward
$12=24 \mathrm{VDC} 90^{\circ}$ conn. with led downward
$32=24 \mathrm{VDC}$ line conn. with led
downward
$91=12$ VDC for integral electrical connections downward
$92=24 \mathrm{VDC}$ for integral electrical connections downward



"
" win wink

## Pneumatic-Spring

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure (bar) | 7 |
| Temperature ${ }^{\circ}$ | $-5 \div+50$ |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{~N} / / \mathrm{min})$ | 150 |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M |



Weight 24 g
Minimum piloting pressure 2 bar

## Pneumatic - Differential

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Max working pressure (bar) | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
| Flow rate at 6 bar with $\Delta \mathrm{p}=1(\mathrm{Nl} / \mathrm{min})$ | 150 |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M 5 |



Weight 22 g
Minimum piloting pressure 2 bar


Pneumatic - Pneumatic
Coding: 2141.52.00.18

| Operational characteristics |  |
| :--- | :---: |
| Fluid | Filtered air. No lubrication needed, if applied it shall be continuous |
| Maxworking pressure (bar) | 7 |
| Temperature ${ }^{\circ} \mathrm{C}$ | $-5 \div+50$ |
| Flow rate at 6 barwith $\Delta \mathrm{p}=1(\mathrm{~N} / / \mathrm{min})$ | 150 |
| Orifice size $(\mathrm{mm})$ | 2.5 |
| Working ports size | M 5 |

Weight 26 g
Minimum piloting pressure 1,5 bar

(2) CN

