Series 2500 "OPTYMA-T"

General

With the introduction of the "T" configuration of solenoid valves with integrated pneumatic connections fitted directly on the sub base the 2500 series (called OPTYMA) is now richer than ever.

Many technical features make the new product interesting:

- Flow rate of 800 NI/min
- Tie rod system to hold the sub bases together
- All pneumatic connections (push-in) on the same side of the manifold
- Quick mounting of the valve to the base using just one screw
- Possibility to replace the valve without the need to disconnect the connections
- Possibility to use different pressures along the manifold (including vacuum)
- IP65 environmental protection
- Electrical connection directly integrated into the base, 32 electrical signals available (can be used to build up a manifold of 32
- monostable valves, 16 bistable valves or any combination within that limit).
- The electrical connection is made via 37 pin D-SUB connector.
- It is also available a 25-pole connector that is able to manage a maximum number of 22 electrical signals.

Possibility to integrate with Field Bus modules CANopen®, PROFIBUS DP, DeviceNet, EtherNet/IP, PROFINET IO RT/IRT, EtherCAT®,

Powerlink and Modbus/TCP.

Possibility to connect input modules, even on the base that does not have the Field Bus module. Large use of technopolymer material reduces the overall weight of the manifold.

"Shifting time of pneumatic directional control valves or moving parts, logic devices were measured in accordance to ISO 12238:2001, Pneumatic fluid power-Directional control valves-Measurement of shifting time"

Main characteristics

Integrated and optimized electrical connection system. IP65 protection degree.

Only one 19mm size

Electrical line connections on one side

Monostable and bistable solenoid valves with the same size dimensions.

Easy and fast manifold assembly - tie rod system to hold the sub bases together

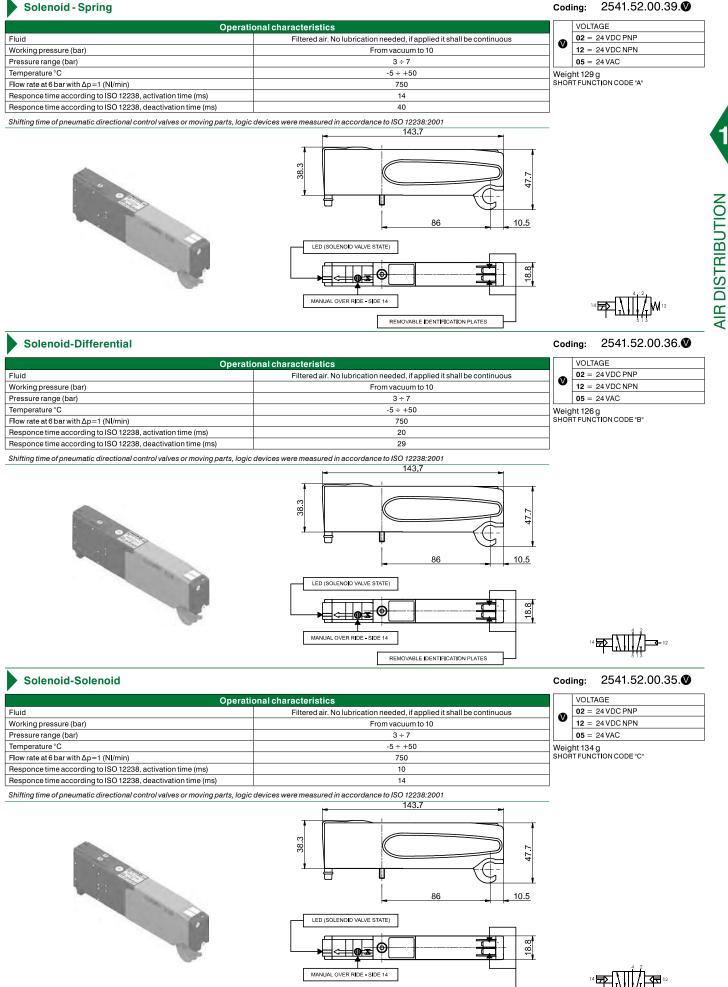
Quick coupling connections directly integrated in sub base

Easy and fast manifold assembling.

Construction characteristics

Body	Technopolymer
Operators	Technopolymer
Spacers	NBR
Spacer	Technopolymer
Spools	Nickel - plated steel / Technopolymer
Springs	AISI 302 stainless steel
Pistons	Technopolymer
Piston seals	NBR

Functions

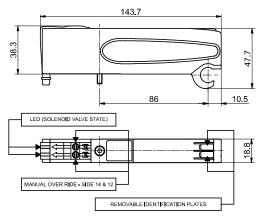

SV 5/2 MONOSTABLE SOLENOID-SPRING SV 5/2 MONOSTABLE SOLENOID-DIFFERENTIAL SV 5/2 BISTABLE SOLENOID-SOLENOID SV 5/3 C.C. SOLENOID-SOLENOID SV 2x3/2 N.C.-N.C. (=5/3 O.C.) SOLENOID-SOLENOID SV 2x3/2 N.O.-N.O. (=5/3 P.C.) SOLENOID-SOLENOID SV 2x3/2 N.C.-N.O. SOLENOID-SOLENOID

Technical characteristics

Voltage	24VDC \pm 10% PNP (NPN and AC on request)	
Pilot consumption	1,3 Watt	
Pilot working pressure (12-14)	From 3 to 7 bar max.	
Valve working pressure [1]	from vacuum up to 10 bar	
Operating temperature	-5°C +50°C	
Protection degree	IP65	
Life (standard operating conditions)	5000000	
Fluid	Filtered air. No lubrication needed, if applied it shall be continuou	

Coding: 2541.52.00.39.♥

REMOVABLE IDENTIFICATION PLATES

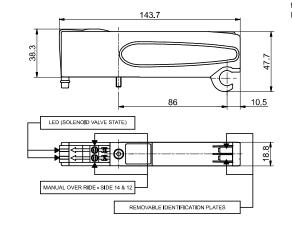


Solenoid-Solenoid 5/3

Coding: 2541.53.31.35.♥

Operational characteristics			VOLTAGE
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous	_ 0	02 = 24 VDC PNP
Working pressure (bar)	From vacuum to 10		12 = 24 VDC NPN
Pressure range (bar)	3 ÷ 7		05 = 24 VAC
Temperature °C	-5 ÷ +50	Weid	ght 132 g
Flow rate at 6 bar with $\Delta p=1$ (NI/min)	600	sно	RT FUNCTION CODE "E"
Responce time according to ISO 12238, activation time (ms)	15		
Responce time according to ISO 12238, deactivation time (ms)	20		
Shifting time of pneumatic directional control valves or moving parts, logic d	levices were measured in accordance to ISO 12238:2001 143.7		
		F	

Coding:


2541.62. 35.

Solenoid-Solenoid 2x3/2

Operational characteristics		
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous	11
Working pressure (bar)	From vacuum to 10	
Pressure range (bar)	3÷7	
Temperature °C	-5 ÷ +50	19
Flow rate at 6 bar with $\Delta p = 1$ (NI/min)	700	1
Responce time according to ISO 12238, activation time (ms)	15	1
Responce time according to ISO 12238, deactivation time (ms)	25	1
Shifting time of pneumatic directional control valves or moving parts, logic	devices were measured in accordance to ISO 12238:2001	-

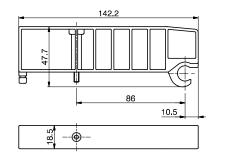
	FUNCTION
	44 = NC-NC (5/3 Open centres)
	55 = NO-NO (5/3 Pressured
G	centres)
	45 = NC-NO (normally
	closed-normally open)
	54 = NO-NC (normally
	open-normally closed)
	VOLTAGE
0	02 = 24 VDC PNP
	12 = 24 VDC NPN
	05 = 24 VAC
Weig	ht 122 g
	mple: If inlet pressure is set at 5bar
	pilot pressure must be at least
Pp=2	2,5+(0.2*5)=3,5bar"

Overall dimensions and technical information are provided solely for informative purposes and may be modified without notice

╬ <u>╬</u> <u>╠</u> ╓┊

╬<u>ਗ਼୵</u>ਸ਼ਜ਼ੵੑਸ਼ਲ਼ਖ਼

[₩]


"Example: If inlet pressure is set at 5bar then pilot pressure must be at least Pp=2,5+(0.2*5)=3,5bar"

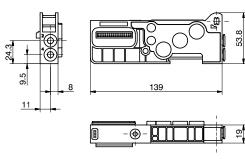
2540.03. Right Endplates Coding: **Operational characteristics** ELECTRICAL CONNECTION Θ 00 = Electrical connection Fluid Filtered air. No lubrication needed, if applied it shall be continuous 25P = Connectors 25 poles Working pressure (bar) From vacuum to 10 Conduit 82/84=DO NOT PRESSURIZE, Temperature °C -5 ÷ +50 SOLENOID PILOTS EXHAUST Ø8 82 84 <u>20.5</u> ï5.5 -Ø9 9 <u>Ø12</u> Ø12₃ 71.6 82 22 т 8 \$ 30 đ |⊕ 38.5 _ 8 6 75 11.5 139.2 **AIR DISTRIBUTION** Ø12 5 Ø5.5--Ø10.5 26.5 33 S 24 Weight 274 g 74.2 2540.**V**.O Left Endplates Coding: VERSION **Operational characteristics** Fluid Filtered air. No lubrication needed, if applied it shall be continuous V 02 = External feeding Working pressure (bar) From vacuum to 10 12 = Self-feeding ELECTRICAL CONNECTION Pressure range (bar) 3 ÷ 7 Temperature °C -5 ÷ +50 37P Connectors 37 poles PNP 25P Connectors 25 poles = PNP Ø5.5-Ø9 Ø8 12 14 1)<u>Ø12</u> 37N = Connectors 37 poles Θ NPN 25N Connectors 25 poles 3⁰¹² 20 82 NPN 80 45 37A = Connectors 37 poles 30 AC 38.5 25A _ Connectors 25 poles 75 6 20. AC 139.2 11.5 Ø5.5 Ø10.5 Weight 300 g (5)<u>Ø12</u> 26.5 ŝ 24. 32 2540.02. Left Endplates-External feeding base: 12/14 divided from conduct 1 74.2 Ø9 Ø5.5-1)<u>Ø12</u> 3<u>Ø1</u> 2 82 àbry 60 45 30 38.5 75 6 139.2 11.5 Ø5.5 -Ø10.5 Weight 300 g (5^{Ø12} 24.5 32 26.5 2540.12. Left Endplates - Self-feeding Base: 12/14 connected with conduct 1 чшр 74.2 Codina: 2530.00

Closing plate		Coding:	2530.00
Operational characteristics		SHORTFUN	CTION CODE "T"
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous		
Working pressure (bar)	From vacuum to 10	7	
Temperature °C	-5 ÷ +50		

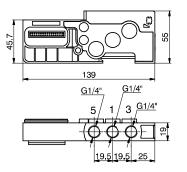
Overall dimensions and technical information are provided solely for informative purposes and may be modified without notice

Weight 53,5 g

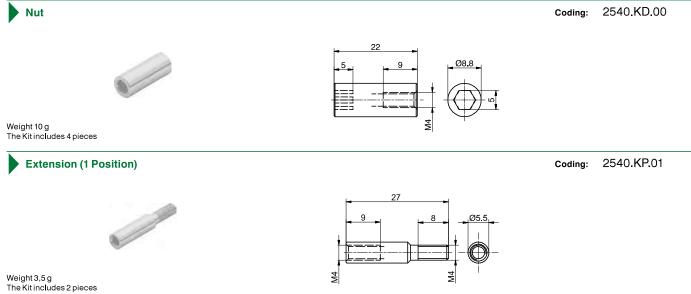
Modular base


Operational characteristics			WORK
Fluid	Filtered air. No lubrication needed, if applied it shall be continuous		1 = G
Working pressure (bar)	From vacuum to 10	0	4 = C
Temperature °C	-5 ÷ +50		6 = Q
		-	8 = Q

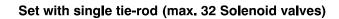
WORKING PORTS SIZE
1 = G1/8" female straight cartridge
4 = CartridgeØ4
6 = Quick fitting tube Ø6
8 = Quick fitting tube Ø8
VERSION
M = for Monostable SV
B = for Bistable SV

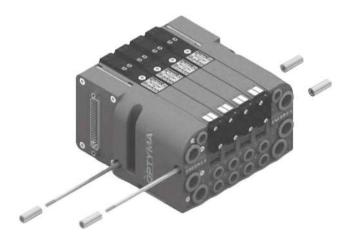

1

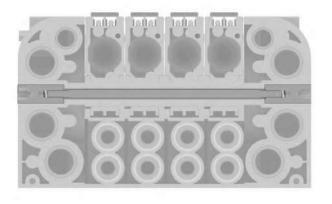
1000 ·

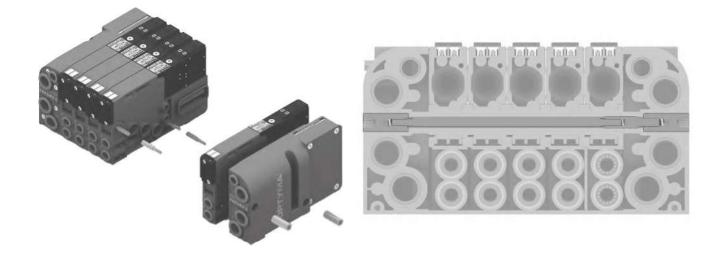


Intermediate Inlet/Exhaust module		Coding:	2540.10
Operational characteristics			
Fluid Filtered air. No lubrication needed, if applied it shall be continuous			
Working pressure (bar) From vacuum to 10		1	
Temperature °C	-5 ÷ +50		






Weight 115 g SHORT FUNCTION CODE "W"

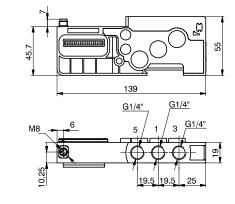

Solenoid valves manifold Series 2500 "OPTYMA-T"

Set with tie-rod, more extension adding a valve

General :

Each Optyma-T manifold lets to manage 32 command signals for the valves.

Optyma-T serial nodes (CANopen[®], DeviceNet, PROFIBUS DP, EtherCAT[®], PROFINET IO RT, EtherNet/IP and Powerlink) have a single pin for the power supply of the solenoid valves. So if you want to interrupt the power supply of one valve it is necessary to interrupt all the valves. The additional power supply module lets to interrupt at the same time the first 2 available command signals for the valves after the module itself. The additional power supply module is particularly useful also when you use control signals that block the valves. This application is effective both with serial management and multi-pole connection of the manifolds. This module is inserted directly into the Optyma-T solenoid valves manifold.


Ordering code

2540.10.2A

AIR DISTRIBUTION

In particular this module is fitted with a M8 3 pins connector: +24V, not connected, GND.

	PIN	DESCRIPTION
	1	+24 VDC
	4	NOT CONNECTED
-3	3	GND

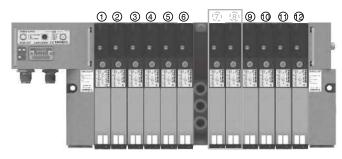
WORKING PRINCIPLE / SIMPLIFIED FUNCTIONAL DIAGRAM

This module uses an external power supply (+24VDC) to manage the solenoid valves.	4 ×	3 _{GND}
	<u>IN 1</u>	OUT 1
	<u>IN 2</u>	OUT 2
	IN 3	OUT 3
	IN 4	OUT 4
	IN 5	OUT 5
	IN 6	OUT 6
The output signal from serial node / multi-pole connection	IN	OUT
is used as command signal: when	IN 32	OUT 32
it is high the +24VDC will be present at the module output.		
If you want to cut off the power supply to a group of 2 valves it is sufficient to take away the +24VDC provided to the module by the M8 connector.		

Please note: It is possible to use more modules to interrupt all the command signals,

simply by inserting them before the signals to interrupt and after the signals already interrupted.

Usage examples:

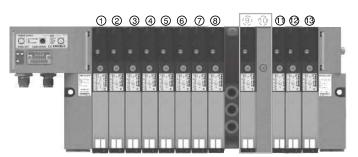

EXAMPLE 1:

Manifold of 12 monostable valves on which you want to interrupt signals 7-8

Assembly:

- 6 monostable valves (not interruptible because before the module),
- 1 additional power supply module,

- 6 monostable valves. Please note: the first 2 monostable of these are interruptible by the module, while the following 4 will work correctly managed directly by the corresponding command signals.



EXAMPLE 2:

Manifold of 12 monostable valves on which you want to interrupt signal 9

Assembly:

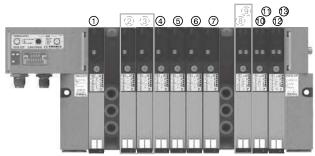
- 8 monostable valves (not interruptible because before the module),
- 1 additional power supply module,
- 1 monostable valve (interruptible),
- 1 closing plate mounted on a monostable base,
- 3 monostable valves (work correctly managed directly by the corresponding command signals).

Please note: Each additional power supply module interrupts always 2 electrical signals.

- If you need to interrupt less than 2 signals you can:
 - assemble the valves to interrupt in the last positions of the manifold, so you don't need to worry about the interrupted exceeding signals; - use a bistable base and mount a monostable valve (for each signal less than the 2 standard);
- use a monostable base and mount a closing plate (for each signal less than the 2 standard).

EXAMPLE 3:

Manifold of 7 monostable e 3 bistable valves on which you want to interrupt signals 2-3 and 8-9.


Assembly:

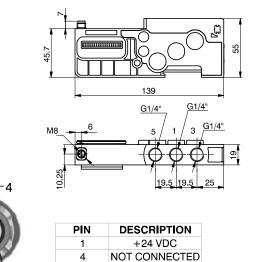
- 1 monostable valve (not interruptible because before the module),
- 1 additional power supply module,
- 6 monostable valves

Please note: the first 2 monostable of these are interruptible by the module, while the following 4 will work correctly managed directly by the corresponding command signals.

- 1 additional power supply module,
- 3 bistable valves.

Please note: the first bistable of these valves is interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.

General :


Each Optyma-T manifold lets to manage 32 command signals for the valves. Optyma-T serial nodes (CANopen[®], DeviceNet, PROFIBUS DP, EtherCAT[®], PROFINET IO RT, EtherNet/IP and Powerlink) have a single pin for the power supply of the solenoid valves. So if you want to interrupt the power supply of one valve it is necessary to interrupt all the valves. The additional power supply module lets to interrupt at the same time the first 4 available command signals for the valves after the module itself. The additional power supply module is particularly useful also when you use control signals that block the valves. This application is effective both with serial management and multi-pole connection of the manifolds. This module is inserted directly into the Optyma-T solenoid valves manifold.

Ordering code

2540.10.4A

In particular this module is fitted with a M8 3 pins connector: +24V, not connected, GND.

GND

3

WORKING PRINCIPLE / SIMPLIFIED FUNCTIONAL DIAGRAM

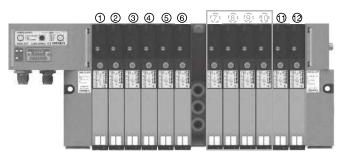
This module uses an external power supply (+24VDC) to manage the solenoid valves.	4× 1 <u>6 3 _{GND} –</u>	
	IN 1OUT 1	
	N 2OUT 2	
	IN 4 OUT 4	
	N 5OUT 5	
The output signal from serial node	N 6OUT 6	
/ multi-pole connection is used as command signal: when	OUT	
it is high the +24VDC will be	IN 32 OUT 32	
present at the module output.		
If you want to cut off the power supply to a group of 4 valves it is sufficient to take away the +24VDC provided to the module by the M8 connector.		

Overall dimensions and technical information are provided solely for informative purposes and may be modified without notice

Please note: It is possible to use more modules to interrupt all the command signals,

🗖 simply by inserting them before the signals to interrupt and after the signals already interrupted.

Usage examples:

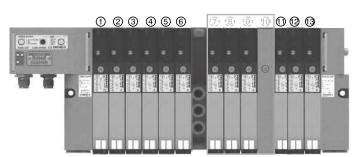

EXAMPLE 1:

Manifold of 12 monostable valves on which you want to interrupt signals 7-8-9-10

Assembly:

- 6 monostable valves (not interruptible because before the module),
- 1 additional power supply module,

- 6 monostable valves. Please note: the first 4 monostable of these are interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.



EXAMPLE 2:

Manifold of 12 monostable valves on which you want to interrupt signals 7-8-9

Assembly:

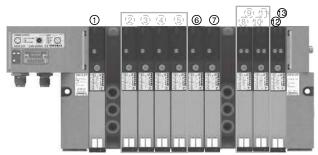
- 6 monostable valves (not interruptible because before the module),
- 1 additional power supply module,
- 3 monostable valves (interruptible),
- 1 closing plate mounted on a monostable base,
- 3 monostable valves (work correctly managed directly by the corresponding command signals).

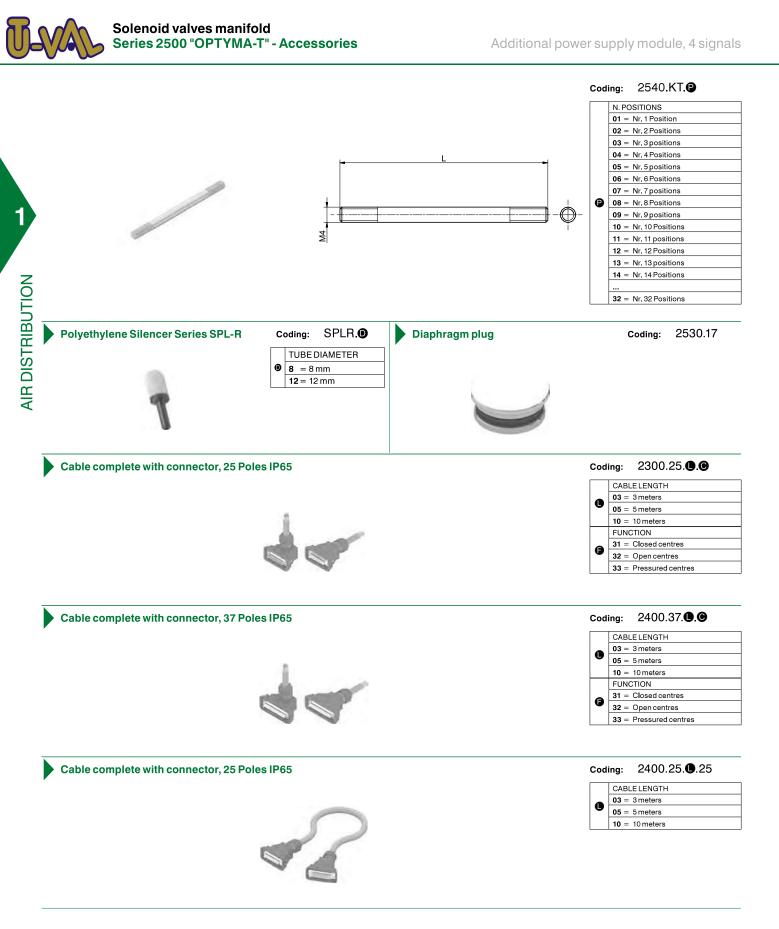
Please note: Each additional power supply module interrupts always 4 electrical signals.

- If you need to interrupt less than 4 signals you can:
- assemble the valves to interrupt in the last positions of the manifold, so you don't need to worry about the interrupted exceeding signals; - use a bistable base and mount a monostable valve (for each signal less than the 4 standard);
- use a monostable base and mount a closing plate (for each signal less than the 4 standard).

EXAMPLE 3:

Manifold of 7 monostable e 3 bistable valves on which you want to interrupt signals 2-3-4-5 and 8-9-10-11.


Assembly:


- 1 monostable valve (not interruptible because before the module),
- 1 additional power supply module,
- 6 monostable valves.

Please note: the first 4 monostable of these are interruptible by the module, while the following 2 will work correctly managed directly by the corresponding command signals.

- 1 additional power supply module,
- 3 bistable valves.

Please note: the first 2 bistable of these valves are interruptible by the module, while the following will work correctly managed directly by the corresponding command signals.

The electrical connection is achieved by a 37 pin connector and can manage up to 32 solenoid pilots.

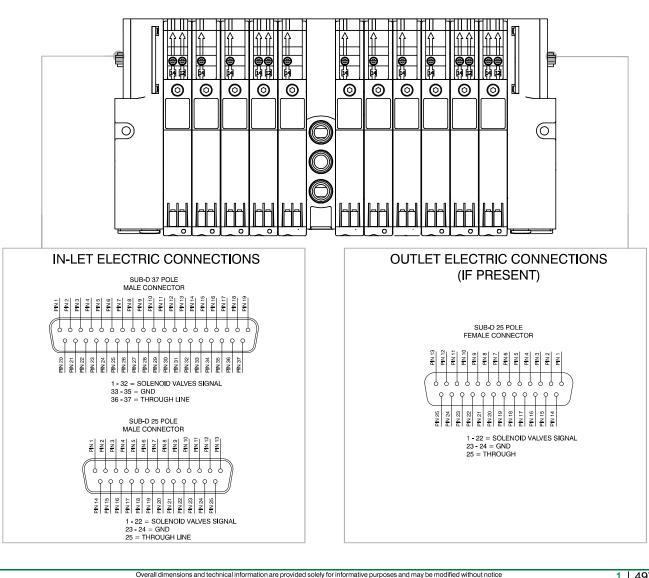
It is also possible use a 25 sub-D pin connector and, in this case, it is possible to manage a maximum of 22 outputs. The management and distribution of the electrical signals between each valve is obtained thanks to an electrical connector which receives the signals from the previous module, uses one, two or none depending on the type, and carries forward to the next module the remaining.

Bistable valves, 5/3 and 2x3/2 valves which have two solenoid pilots built in, use two signals; the first is directed to the pilot side 14 the second to the pilot side 12. Modular bases can be fitted with two type of electrical connector: the monostable version uses only one signal (connected to the pilot side 14) and carries forward the remaining, the bistable version which always uses two signals.

This solution allows the modification of the manifold (replacement of monostable valves without bistable for example) without having to reset the PLC output layout.

On other hand this solution limits the maximum number of valves to 16 when it is used a 37 pin connector or 11 when it is used a 25 pin connector.

Intermediate supply/exhaust module uses an electrical connector directly forwarding signals to the next one without any kind of modification.


This allows the use of intermediate modules in any position of the manifold.

All the electrical signals that have not been used on the manifold can be used placing at the end of the manifold the end plate complete with the 25 sub-D female connector.

The number of available signals depends of the connector used to the type of the left end plate and by the total signals used along the manifold:

37 pin connector nr of output = 32 - (total of used signals)25 pin connector nr of output = 22 - (total of used signals)

Following we show some examples of possible combination and the relative pin assignment.

